基于改进交叉熵算法的伺服电机参数优化设计*

李郝林,郭德宝,姜 晨,迟玉伦 (上海理工大学 机械工程学院,上海 200093)

摘 要: 针对伺服电机变负载控制问题,提出了一种对自适应模糊 PID 控制器初始参数优化的改进交叉熵算 法。通过运用此方法对伺服电机模糊 PID 控制器在控制过程中的参数进行优化,证明了该算法在模糊 PID 控制 器应用的过程中具有较好的鲁棒性和兼容性。通过实验,同时与基于 ZN 算法、遗传算法和交叉熵算法的模糊 PID 控制结果进行对比,证明改进交叉熵优化算法不但具有较快的响应速度、较好的稳定性、较小的超调和较优 的 ITASE 性能指标,而且其优化过程更为精确简便。

关键词: 变负载; 模糊 PID; 改进交叉熵

中图分类号: TP273.4 文献标志码: A 文章编号: 1001-3695(2014)05-1433-04 doi:10.3969/j.issn.1001-3695.2014.05.035

Optimal of servo motor parameters using improved cross entropy method

LI Hao-lin, GUO De-bao, JIANG Chen, CHI Yu-lun

(School of Mechanical Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China)

Abstract: In view of the load variable servo motor control, this paper focused on the optimal tuning of fuzzy-PID controller initial parameters using an improved cross-entropy (ICE) precise mathematical framework, which imposed on the system to maintain good control effect. The experiment results of a comparative study demonstrate that the adaptive fuzzy-PID controller using ICE method does find the optimal solution very precisely and convenient, which provides a better response and robustness, a smaller overshoot and a better ITASE performance index than Ziegler-Nichols (ZN) method and genetic algorithms (GA) method.

Key words: load variable; fuzzy-PID; improved cross entropy

0 引言

传统 PID(proportional integral derivative)控制器是在伺服 电机中最常用的一种控制器。当伺服电机所带负载发生变化 或受到外部扰动的影响时,其控制器参数要相应地随之变化, 才能保证伺服电机的控制性能。因此,人们提出了模糊 PID 智 能控制方法^[1]。

模糊控制是一种模仿人类思维的智能控制算法。在交流 伺服电机模糊 PID 控制中,模糊算法能够独立精确地建立数学 模型,以解决传统交流伺服电机控制器不能自适应的缺陷。但 由于模糊控制是一种非线性控制,其初始参数的选择也极大地 影响着伺服系统性能的优劣。因此交流伺服电机模糊 PID 控 制器初始参数的优化方法成为现阶段研究的重要课题。其中 在工程中最常用的方法有 Ziegler-Nichols(ZN)法^[2],此方法需 要在开环的控制系统完成,以被控对象的阶跃响应为依据,结 合给定的性能指标可推导出经验公式,整定出伺服电机模糊 PID 控制器的三个初始参数。但由于这种方法对初始规则的 制定,隶属函数的选择依赖性很强,并且要假定被控对象为一 阶惯性纯滞后环节,所以该方法的应用具有较大的局限性,而 且通过实践验证,ZN 法整定的参数系统的超调较大。后来 Li 等人^[3]提出遗传算法(genetic algorithms)对模糊 PID 控制器进 行优化。通过用遗传算法对模糊 PID 控制器中的参数进行编码,确定适应度函数,在复制、交叉、变异的进化过程中获得全局最优参数,保证模糊 PID 控制器的最优性能。但由于这类算法优化过程较为复杂、进化代数多、计算时间长等原因,在现阶段仍难以在工程实践中很好地应用。

针对以上问题,本文提出运用交叉熵(cross entropy)算法 对模糊 PID 控制器的初始参数进行优化。该算法在参数优化 的过程中适应度函数的选取是参数优化的关键,选择不同的适 应度函数,参数优化的结果也将不同。因此,为了达到较好的 优化效果,必须选择一个能够准确反映系统性能的评价函数作 为适应度函数。在伺服电机响应特性评价中,误差积分评价指 标已经是一种广为使用的评价函数^[4,5]。Haber 等人^[6]首次将 交叉熵算法应用到钻床中的模糊控制系统,以ITAE(integrated time and absolute error)积分误差性能指标作为适应度函数,并 通过仿真和实验分别证明该算法在钻削控制系统参数优化中 与其他常用算法相比能够实现更快的响应速度、更小的超调和 更好的鲁棒性。李洁等人^[7]将交叉熵算法首次运用到 PID 控 制中,并提出在交叉熵算法中常用的 IAE (integrated absolute error)、MSE(mean square error)、ITAE 三种误差积分评价指标 作为适应度函数,采用以上不同的积分公式意味着估计整个过 渡过程优良程度的侧重点不同,最后通过仿真证明交叉熵算法 不仅所获结果较优,而且计算复杂度也明显小于遗传算法。本

收稿日期:2013-06-17;修回日期:2013-08-12 基金项目:国家科技重大专项资助项目(2011ZX04004-051);上海市自然科学基金资助 项目(12ZR1420700);机械系统与振动国家重点实验室开放基金资助课题(MSV-2012-13)

作者简介:李郝林(1961-),男,院长,教授,博导,博士,主要研究方向为数控技术、精密检测与智能控制;郭德宝(1989-),男,内蒙古人,硕士研究生,主要研究方向为数控技术、精密检测与智能控制(125771662@qq.com);姜晨(1978-),男,讲师,博士,主要研究方向为精密磨削、数控技术.

文通过实验发现,基于以上误差积分评价指标为适应度函数的 交叉熵算法在模糊 PID 控制器的初始参数优化过程中,其控制 效果及可操作性确实优于其他算法,各评价指标能够对系统响 应过程中的误差进行刻画;但其优化结果有时会过于追求对该 适应度函数所侧重的某项性能指标的优化,从而以损害其他方 面性能为代价,最终导致控制系统整体性能变差。

因此本文根据交流伺服电机的控制性能评价需求,在综合 比较 IAE、MSE、ITAE、ITSE(integrated time and square error)性 能评价指标的特性后,设计了 ITASE(integrated time and absolute or square error)作为伺服电机的控制性能评价指标,并以 此作为适应度函数使算法进一步完善,即改进交叉熵算法 (ICE)。

1 模糊 PID 控制器

交流伺服电机模糊 PID 控制器是通过实时对误差及误差 变化率的反馈依据模糊规则推导出合适的 PID 控制器参 数^[8-10]。图1为模糊 PID 控制器原理,主要是由参数可调的 PID 控制器和模糊控制系统两部分组成。模糊控制系统的输 入量是速度误差 e 和误差变化率 ec,通过模糊化、模糊推理、解 模糊三个步骤得到输出量,也就是 PID 控制器参数 K_p 、 K_i 、 K_d 所对应的增量 ΔK_p 、 ΔK_i 、 ΔK_d 。

图1 模糊PID控制器原理

模糊控制器实时改变 PID 参数所对应的增量,从而保证控制器具有良好的控制性能。输出的参数为 K_p 、 K_i 、 K_d ,见式(1)。

$$\begin{cases} K_p = K_{p0} + \Delta K_p \\ K_i = K_{i0} + \Delta K_i \\ K_d = K_{d0} + \Delta K_d \end{cases}$$
(1)

其中:*K_{p0}、K_{a0}、K_{a0}为 PID 参数的初始值,对控制器能否实现快速响应有着至关重要的作用,也是本文需要运用 ICE 算法优化的参数。*

2 交叉熵算法及应用

交叉熵算法由 Rubinstein 在 1997 年提出的一种估计随机 网络中的稀有事件概率时提出的一种自适应算法。随后 Rubinstein 先后在 1999 年和 2001 年运用交叉熵解决优化问题。现 在交叉熵算法已广泛应用于组合优化、图像分割、企业决策等 领域的若干实际问题中^[11,12]。

在交流伺服电机模糊 PID 控制器中,初始 PID 参数的选择 对于控制器能否快速达到最优性能有着至关重要的作用。而传 统的 ZN 法、遗传算法确定控制器初始参数往往导致存在较大 的超调并带有一定的局限性。交叉熵优化方法作为一种新型高 效的随机优化算法,被用于交流伺服电机模糊 PID 控制器的初 始参数优化设计,可以使交流伺服电机具有较快的响应速度、较 好的稳定性、较小的超调和较优的 ITASE 性能指标,而且其优化 过程更为精确简便,其参数优化系统结构如图 2 所示。

图2 (改进)交叉熵算法对模糊PID控制器参数优化的系统结构

在交流伺服电机模糊 PID 控制器中需要优化的参数是式 (1)中的控制器初始参数 K_{µ0}、K_a、K_a。。这三个参数在优化过 程中采用实数值编码。在组合优化中,本文选择的概率分布函 数为正态分布函数。在优化过程中分为两个阶段:第一个阶段 是随机产生一定数量的样本并通过评价函数或性能指标对其 进行评价排序;第二个阶段为运用(改进)交叉熵算法将第一 阶段处理好的数据通过迭代不断优化。

2.1 交叉熵算法

交叉熵算法的基本原理[11~16]如下:

对于同一离散信源,在同一概率密度空间的两个概率测度 p和q的交叉熵定义为

$$H(p|q) = \sum_{x \in Y} p(x) \log \frac{p(x)}{q(x)}$$
(2)

其中:p表示第 i次时间发生后的后验概率;q表示先验概率。 这个交叉熵 H(p|q)表示概率分布 p 和 q 的距离,也称为 Kull-Back-Leibler 距离,常用来度量同一随机变量的不同分布之间 的差异。

对于解决优化问题,首先将优化问题与其概率估计问题相 关联,设x为 χ 空间内的任意随机变量,则 $p(\chi)$ 是其概率密度 函数, $\phi(x)$ 是关于 χ 的适应度函数,交叉熵算法就是为了求得 x使其 $\phi(x)$ 取得最小值:

$$\phi(x^*) = \gamma^* = \min \phi(x) \tag{3}$$

然后在 γ 上定义一组概率密度函数[$f(x,v), v \in V$]和指示函数:

$$I_{\phi(x^{(i)}) < \gamma} = \begin{cases} 1 & \text{if } \phi(x) \ge \gamma \\ 0 & \text{if } \phi(x) < \gamma \end{cases}$$
(4)

因此,该算法使用重要抽样密度函数 g(x):

$$g^{*}(x) = \frac{I_{\phi(x^{(i)}) \le \gamma} f(x, v)}{g(x^{(i)})}$$
(5)

通过迭代选择参数向量 v,得到f(x,v)与 $g^*(x)$ 之间的 Kullback-Leibler 距离最小,两密度函数交叉熵定义为

$$H(g|f) = \sum_{x \in \chi} g(x) \log \frac{g(x)}{f(x)}$$
(6)

所以得到交叉熵最小值的等价式:

$$\min_{\mathbf{v}} H(g|f) = \min_{\mathbf{v}} \frac{1}{R} \sum_{i=1}^{R} I_{\phi(x^{(i)}) \leq \gamma} \log f(x^{(i)}, \mathbf{v})$$
(7)

其中: $x^{(i)}$ 是 $f(x, v_{i-1})$ 生成的样本 x_0, x_1, \dots, x_N ,并依据适应度 函数 $\phi(x)$ 将其排序,按照优劣次序选择前R个较优样本,通 过多次迭代式(8)(9),使概率密度函数 $N(x|\mu,\sigma)$ 的均值 μ 接 近全局或是局部最优值,而方差 σ 会变得非常小,此时从 $N(x|\mu,\sigma)$ 中抽样,将会以大概率得到一个非常接近全局或是局部 最优值的数值,从而达到优化的目的,即可得到优化系统中的 最优参数 $[K_{a0}, K_{a0}, K_{b0}]_{out}$ 。

$$\mu_{t} = \alpha \mu_{t-1} + \frac{1 - \alpha}{R} \sum_{i=1}^{R} \tilde{x}^{(i)}$$
(8)

$$\sigma_{t} = \alpha \sigma_{t-1} + \frac{1 - \alpha}{R} \sum_{i=1}^{R} (\tilde{x}^{(i)} - \mu_{t-1}) (\tilde{x}^{(i)})^{T}$$
(9)

其中:α为光滑因子,取值范围为[0.5,0.9]。

2.2 基于改进交叉熵算法的模糊 PID 控制器参数优化

在模糊 PID 控制器参数优化中,x 由需要优化的三个参数 组成的向量[$K_{\mu\nu}$, $K_{\nu\nu}$, $K_{\nu\nu}$]。其中适应度函数 $\phi(x)$ 用于对每个 参数得到的响应曲线进行评价,而积分误差评价指标已经是被 大家所接受的一种原交叉熵算法所用的适应度函数。以下是 积分误差的常用评价函数^[4-7]:

$$IAE = \int_0^\infty |e(t)| dt \tag{10}$$

$$MSE = \frac{1}{2} \int_{0}^{\infty} |e^{2}(t)| dt$$
(11)

$$\text{ITAE} = \begin{bmatrix} \infty \\ 0 \end{bmatrix} t | \mathbf{e}(t) | dt \tag{12}$$

$$ITSE = \int_{0}^{\infty} te^{2}(t) | dt$$
(13)

根据系统性能的侧重点不同,基于 IAE 指标设计的系统 具有适当的阻尼和良好的瞬态响应,其缺点是当系统参数的选 择不同时在性能指标上的反应不明显;而按照 MSE 这种准则 设计的控制系统,具有较快的响应速度和较大的振荡性,相对 鲁棒性比较差;对于 ITAE 指标设计的控制系统,瞬态响应的 振荡性小,能够很好地反映响应速度,对系统响应过程中的误 差进行了刻画,但是却未能对响应过程中的超调误差进行区 分;而 ITSE 此类指标的特点是着重考虑瞬态响应后期出现的 误差,较少考虑响应中大的起始误差,但能够较好地反映超调。 在实际应用中,依据系统性能的侧重点选择适应度函数,但往 往会因为过于倾向所侧重的性能指标而顾此失彼,导致整体性 能变差。

针对上文中所提出适应度函数的问题,本文根据 ITAE 和 ITSE 评价指标进行针对性的改进,提出基于 ITASE 评价指标 作为适应度函数的交叉熵算法,即改进交叉熵算法。该适应度 函数当响应曲线未出现超调时,使用 ITAE 评价函数进行计 算;当产生超调时,使用 ITSE 评价函数进行计算,如式(14) 所示。

$$ITASE = \begin{cases} \int_{0}^{\infty} t |y(t) - y_{o}(t)| dty(t) < y_{o}(t) \\ \int_{0}^{\infty} t (y(t) - y_{\sigma}(t))^{2} dty(t) \ge y_{o}(t) \end{cases}$$
(14)

其中: $y_o(t)$ 为理想的目标值;y(t)为实际目标值。当系统产生 超调时, $y(t) \ge y_o(t)$,使用 ITSE 评价函数,即在原有 ITAE 评 价函数的基础上加入惩罚因子($y(t) - y_o(t)$),即超调越大,其 评价指标越差,并且其惩罚力度随着超调量的增加而加大。这 样可以有效地反映响应特性并减小超调,从而达到最优控制的 效果。

改进交叉熵算法在模糊 PID 控制器的参数优化过程与原 交叉熵算法相同,其具体步骤如下:

a)初始化被优化参数组 V_t = [K_{p0}, K_{i0}, K_{d0}] = V₀, 最大迭代
 次数为 T, 光滑因子为 α。

b) 从概率密度分布函数即式(9) 中随机选择 N 个样本 x_0 , x_1, \dots, x_N , 并依据适应度函数 $\phi_{\Pi ASE(x)} = \Pi ASE$ 将其排序, 按照 优劣次序选择前 $R = \theta N$ 个较优样本, 其中 θ 为分位数。

c)根据式(15)不断迭代更新被优化参数组:

$$V_{t+1} = \arg \min_{\mathbf{v}} \frac{1}{R} \sum_{i=1}^{R} I_{\phi(x^{(i)}) \leq \gamma} \log f(x^{(i)}, \mathbf{v})$$
(15)

在迭代抽样的过程中,针对本文 $K_{\mu\nu}$ 、 $K_{\lambda\nu}$ 、 $K_{\lambda\nu}$ 三个初始参数 的连续值优化问题,选用三元正态分布f(x, v)作为抽样用的 概率密度函数:

$$f(x, \mathbf{v}) \equiv N(x|\mu, \sigma) = \frac{\exp\{-\frac{1}{2}(x-\mu)'\sigma^{-1}(x-\mu)\}}{(2\pi)^{3/2}|\sigma|^{1/2}} \quad (16)$$

其中,正态分布的均值 $\mu = EX$ 和方差 $\sigma = DX$ 的值会根据交叉 熵迭代算法自适应地调整。当算法接近收敛时, μ 接近全局或

是局部最优值,而 σ 会变得非常小,此时从 N(x | μ, σ) 中抽样, 将会以大概率得到一个非常接近全局或是局部最优值的数值, 从而达到优化的目的,其过程如式(8)(9)所示。

d)如果迭代次数 t 为最大迭代次数 T 或在 t₁ 次实现收敛,
 则终止程序,选择当前被优化参数为最优参数 [K_{µ0}, K_{i0},
 K_{d0}]_{mt};否则返回步骤 b),继续迭代。

3 实验平台与实验结果

针对交流伺服系统变负载问题,搭建了交流伺服电机惯性 矩实验台(图3)。该实验台是由四台不同型号的伺服电机及 其对应的驱动器、惯量盘、计算机组成,其中每个电机配有相同 的负载惯量盘组,每个负载惯量盘的大小是按照电机转子惯量 以及电机的负载范围进行设计的,各负载惯量盘所对应的负载 惯量如表1所示。该实验台可以进行驱动器参数自整定、预测 负载惯量和变负载下参数实时自适应控制等实验。

图3 交流伺服电机变负载控制性能实验台 表1 各负载惯量盘所对应的负载惯量

电机负载 惯量盘号	0	1	2	3	4
负载转动惯量值 (kg・m ²)	3.92e - 5	7.98e – 5	15.53e – 5	23.74 e - 5	31.01 e - 5
电机负载 惯量盘号	5	6	7	8	9
负载转动惯量值 (kg・m ²)	38.70 e - 5	46.42e – 5	54.01e - 5	61.90 e - 5	69.44 e – 5
电机负载 惯量盘号	10	11	12	13	14
负载转动惯量值 (kg・m ²)	77.20e – 5	84.73 e - 5	92.48 e - 5	100.28 e - 5	107.77 e – 5

3.1 模糊 PID 控制器初始参数的评价实验

首先改变交流伺服电机的模糊 PID 控制器的初始参数,并 依据不同的评价指标对其进行评价。实验过程及结果如下:在 3 号电机 1 号盘在转速 800 rad/min 的情况下,任意改变模糊 PID 控制器的初始参数,得到响应曲线如图 4 所示。

图4 不同初始参数下的响应曲线

通过图4可以看出,第四组实验曲线相比之下存在超调, 并且第三组曲线的响应速度较慢。因此模糊 PID 控制初始参 数的选择对系统性能的优劣有着较大的影响。而对于其他组 的实验,仅通过图像很难辨别出哪组响应曲线更好,因此借助 提到的所有评价指标对其进行评价比较,得到以下数据,如表 2 所示。

通过表2的单项评价指标可以看出,对于第一组数据明显 优于另外几组数据,但由于第二组数据的响应速度略快于第一 组,所以第二组数据的 ITAE 指标较第一组更优,而第三组数 据的超调略优于第一组数据,所以其 ITSE 指标优于第一组的 指标,但综合评价各组,第二组的超调量大,回调速度慢,第三 组的响应速度慢,都不能使其成为好的响应曲线。因此通过以 上实验有效地论证了 ITASE 的有效性。

表2 对比参数的各项评价打	指标
---------------	----

对比	参数	第一组	第二组	第三组	第四组	第五组	第六组
ITA	SE	353571.6	384267.1	502036	2117810	774346	450021
IT	AE	343861	334501	502043	495319	453403	359361
IT	SE	94875255	96227195	94318494	114344904	137343069	103645135
IA	Ε	17336	17525	17843	20161	21063	18207
MS	SE	14272.29	14389.27	14284.15	15554.2	17097.76	14915.62
超调	量/%	5.875	9.875	0.25	30.875	17.125	12.875
响应速	[度/ms	43.6	43.	101.4	53.1	51.1	44.2

3.2 基于改进交叉熵算法的参数优化验证实验

在以上实验的基础上,为验证改进交叉熵算法的有效性, 进行了进一步的对比实验。其实验过程如下:对每台电机在转 速 800 rad/min 的情况下,将伺服电机处于负载变化的情况下 运用改进交叉熵算法对模糊 PID 控制器参数进行优化实验,并 在相同的条件下与基于 ZN 算法、遗传算法和交叉熵算法的模 糊 PID 控制器参数优化结果进行对比,都得到了较为一致的控 制效果。对于 2 号电机的实验中, $K_{\mu0}$ 的取值范围为[50, 1500], K_a 的取值范围为[50,500], K_{a0} 的取值范围为[10, 100]。在遗传算法的参数寻优过程中,初始种群为 80,交叉概 率为 0.7,变异概率为 0.002,算法执行代数为 300。对于交叉 熵算法与改进交叉熵算法,设定相同的实验参数:抽样样本数 $N = 300, 分为数 \theta = 0.1, 即 R = \theta N = 30, 最大迭代次数 T = 30。$

图 5 为不同算法所得的伺服电机电流和速度响应曲线。 通过图 5 可以发现 ICE 算法所得到的控制效果与其他算法相 比具有较快的响应速度和较小的超调量。但为了更好地说明 该算法的优越性,本文依据文中所述积分误差评价指标和单项 指标对各个参数优化算法的优劣进行评价,如表 3 所示。

图5 不同算法所得的伺服电机电流和速度响应曲线

10 20 30 40 50 60 70 80 90 100

表3 四种算法的评价指标对比

	••••••			
对比参数	ZN	GA	CE	ICE
ITASE	2353815.204	1298191.953	398751	344063
ITAE	494591.322	492339.524	361685	315681.943
ITSE	107900293.3	133019195	94561856	94945001.04
IAE	19680.76	21160.21	17848.89	15445.18
MSE	15178.59	16844.61	14132.40	14548.56
超调量/%	3.275	2.5125	0.875	0.925
响应速度/ms	51.1	52.7	57.3	43.1

由表 3 可以清晰地看出, ICE 算法所得的响应速度仅有 43.1 ms, 而 CE、GA 和 ZN 算法均达到了 50 ms 以上。更值得 一提的是, ICE 算法的超调量仅有 0.925%, 并且各个评价指标 都优于另外两种算法。对于 ICE 和 CE 算法的比较, CE 由于 过于侧重超调量这一项性能指标而导致 K_a, 过大, 其超调量较 ICE 仅小 0.05%, 但响应速度是四种算法中最慢的, 而且除了 ITSE 性能指标外, 其他性能指标均劣于 ICE 算法的性能指标。 因此可以得出结论:通过实验证明 ICE 算法在模糊 PID 控制系 统参数优化过程中不仅具有较好的鲁棒性和兼容性, 而且其优 化结果明显优于 ZN、GA 和 CE 算法。

4 结束语

本文针对交流伺服电机变负载控制问题,提出了一种对自 适应模糊 PID 控制器初始参数优化的改进交叉熵算法。该算 法通过初始化、抽样、评价、迭代四个步骤对交流伺服电机模糊 PID 控制器的初始参数进行优化。实验结果表明,与 ZN 法、遗 传算法和原交叉熵算法相比,改进交叉熵算法不仅具有较快的 响应速度、较好的稳定性、较小的超调和较优的 ITASE 综合性 能指标,而且其优化过程更为精确简便,寻优能力更强。因此, 改进交叉熵算法在交流伺服电机变负载自适应模糊 PID 控制 器初始参数的优化中有着较强的优越性和较好的应用前景。 今后的工作重点是进一步分析改进交叉熵算法在高实时性、高 精度下的优化规律,为设计高性能的模糊 PID 控制器优化提 供理论支持。

参考文献:

- AHN K K, TRUONG D Q. Online tuning fuzzy PID controller using robust extended Kalman filter [J]. Journal of Process Control, 2009,19(6):1011-1023.
- [2] 王肖,李郝林,丁慧. 基于模糊控制理论的 PID 控制器参数的确 定方法[J]. 现代制造工程,2010(10):111-114.
- [3] LI T H S, SHIEH M Y. Design of a GA-based fuzzy PID controller for non-minimum phase systems [J]. Fuzzy Sets and Systems, 2000, 111(2):183-197.
- [4] TAN Wen, LIU Ji-zhen, CHEN Tong-wen, et al. Comparison of some well-known PID tuning formulas [J]. Computers & Chemical Engineering, 2006, 30(9):1416-1423.
- [5] 陈鹏展. 交流伺服系统控制参数自整定策略研究[D]. 武汉:华 中科技大学,2010.
- [6] HABER R E, TORO R M D, GAJATE A. Optimal fuzzy control system using the cross-entropy method. A case study of a drilling process [J]. Information Sciences, 2010, 180(14):2777-2792.
- [7] 李洁,柴夭佑,宫经宽.基于交叉熵算法的 PID 控制器设计[J].控 制与决策,2011,26(5):794-796,800.
- [8] MANN G K I, GOSINE R G. Three-dimensional min-max-gravity based fuzzy PID inference analysis and tuning[J]. Fuzzy Sets and Systems, 2005, 156(2):300-323.
- [9] CHO H J, CHO K B, WANG B H. Fuzzy-PID hybrid control: automatic rule generation using genetic algorithms [J]. Fuzzy Sets and Systems, 1997, 92(3):305-316.
- [10] LIU Jie, WANG W, GOLNARAGHI F, et al. A novel fuzzy framework for nonlinear system control [J]. Fuzzy Sets and Systems, 2010, 161(21):2746-2759.
- [11] ALTIPARMAK F, DENGIZ B. A cross entropy approach to design of reliable networks [J]. European Journal of Operational Research, 2009, 199(2):542-552.
- [12] KULLBACK S. Information theory and statistics [M]. New York: Wiley, 1959.
- BOTEV Z I, KROESE D P. An efficient algorithm for rare-event probability estimation, combinatorial optimization, and counting [J]. Methodology and Computing in Applied Probability, 2008, 10 (4):471-505.
- [14] BOTEV Z I, KROESE D P. The generalized cross entropy method, with applications to probability density estimation [J]. Methodology and Computing in Applied Probability,2011,13(1):1-27.
- [15] RUBINSLEIN R Y. A stochastic minimum cross-entropy method for combinatorial optimization and rare-event estimation [J]. Methodology and Computing in Applied Probability, 2005, 7(1):5-50.
- [16] KROESE D P, RUBINSLEIN R Y, TAIMRE T. Application of the cross-entropy method to clustering and vector quantization [J]. Journal of Global Optimization, 2007, 37(1):137-157.