基于多子带可逆细胞自动机的二值图像压缩算法*

吴慧琳,周激流,龚小刚 (四川大学 电子信息学院,成都 610064)

摘 要:提出一种新颖的基于多子带可逆细胞自动机的二值图像压缩算法。该算法采用可逆细胞自动机可实 现信号子带编码的思想,实现了一个四子带可逆细胞自动机,并用其将二值图像信号分解为一个低频子带和三 个高频子带。然后用改进的跳白块算法对各子带分别进行压缩编码。实验结果表明,该算法计算复杂度低,且 具有较高的压缩比。

关键词:细胞自动机;多子带细胞自动机;可逆细胞自动机;二值图像压缩 中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2013)05-1547-04 doi:10.3969/j.issn.1001-3695.2013.05.069

Binary image compression algorithm based on *m*-band reversible cellular automata

WU Hui-lin, ZHOU Ji-liu, GONG Xiao-gang

(College of Electronics & Information Engineering, Sichuan University, Chengdu 610064, China)

Abstract: This paper proposed a novel binary image compression algorithm based on *m*-band reversible cellular automata. Reversible cellular automata could be used as non-linear filter banks for subband coding. This paper constructed a simple fourband reversible cellular automata with Margolus cell. After decomposing the binary image into a low-frequency and three high frequency sub-band, it compressed the four sub-bands separately by the improved white block skipping algorithm. And the experiments show that the computational complexity is low, and the compression ratio is improved more.

Key words: celular automata; m-band cellular automata; reversible cellular automata(RCA); binary image compression

0 引言

国家教育部 CALIS 建设项目资助研究课题《知识库支持的数字图像分层语义描述模型与系统》中,二值数字图像压缩 是一个非常重要的内容。常用的二值图像压缩算法有游程编码(run length coding, RLC)^[1]、四叉树编码、哈夫曼编码(Huffman coding)、跳白块(white block skipping, WBS)编码^[2,3]、矩形 区域分割压缩算法^[4]以及这些算法的改进算法等。这些算法 各有优劣,已经较为成熟,压缩率很难再提高。二值图像编码 标准 JBIG 可以实现累进编解码,具有较高压缩率;但其解码过 程用时较长,且由于 IBM 和 AT&T 公司掌握着 JBIG 的技术专 利,从而限制了该技术的应用和研究^[5]。

可逆细胞自动机(RCA)具有保存信号的初始信息的特性。 数学家 Kari^[6,7]和 Paek^[8]从数学角度证明了同时满足单射和满 射的细胞自动机具有可逆性。2000年,Kari^[9]提出用多状态的 线性细胞自动机作为滤波器实现子带编码的想法。2008年, Cruz-Reyes 等人^[10]用多个可逆细胞自动机构造了一个正交方向 滤波器组,实现了对信号的多相分解。

为了进一步提高二值图像压缩率,本文首先提出了一个可 实现信号子带编码的多子带可逆细胞自动机模型。随后提出 一个基于多子带可逆细胞自动机的二值图像压缩算法(简记 为 RCA-WBS)。该算法先用一个四子带可逆细胞自动机将二 值图像信号分解为一个低频和三个高频子带,其中低频子带中 聚集了大量的黑色像素,而高频子带中聚集了大量连续的白色 像素。随后用改进的跳白块算法分别对各子带进行压缩编码, 最后通过实验验证该算法的性能与效率。

1 背景知识

基于子带编码的图像压缩算法,实质是通过滤波器组将原 始图像信号由时域转变为频率域(变换域),并分割成具有不 同频率分量的若干个子带信号,然后再对各子带分别进行数字 编码处理。解码过程则是将各子带信号分别进行数字解调,并 按原分布状态进行恢复,最后将各子带输出信号送到同步相加 器得到与原始图像信号十分相似的重建信号。其中,图像信号 能够完全重建的充要条件是:经过变换产生的系数,经过逆变 换后可以无差错地复制出原信号,即一一映射。

可逆细胞自动机是一类特殊的细胞自动机,其转换函数 (转换规则)是单射且满射的,正好满足完全重建的条件。在 Cruz-Reyes 等人的研究基础上,本文提出一个多子带细胞自动 机模型,并用 Margolus 细胞实现了一个最简单的四子带可逆细 胞自动机。该可逆多子带细胞自动机可用于仿真滤波器组,实 现对二值图像信号的多相分解。

1.1 多子带细胞自动机模型

如图 1 所示,若每个细胞 *a* 存储的是一个 *m* 元序列,或者 说存储的是一个具有 *m* 个不同变量的向量, $a = [a_1, a_2, \cdots, a_m]^T$,其中 a_i 被称为细胞 *a* 的第 *i* 分量,则将这个细胞自动机 称为多子带细胞自动机,或者 *m* 带细胞自动机。简单理解就 是每个细胞有 *m* 个分量。

收稿日期: 2012-09-13; 修回日期: 2012-10-30 基金项目: 国家教育部 CALIS 建设项目资助课题(03-3204)

作者简介:吴慧琳(1980-),博士研究生,主要研究方向为人工智能、数字信号处理、图像处理(whl0912@ hotmail. com);周激流(1963-),教授, 博导,主要研究方向为数字水印、信息处理、生物特征识别等;龚小刚(1980-),博士,主要研究方向为模式识别、信息处理、生物特征识别等.

图1 m带细胞自动机

图 1 中的 s_i 表示细胞的第 i 分量的状态, $s_i \in Q$; 而 $s = [s_1, s_2, \dots, s_m]^T \in Q^m$ 表示细胞的状态。 s_i 实质上是细胞状态 s 的 一个投影 $\phi_i(s) = s_i$, 即 $\phi_i: Q^m \to Q$ 。

 $c: Z^{d} → Q^{m}$ 表示 d 维细胞空间中所有多子带细胞自动机的 全局状态(构型)。 ϕ_{i} 是构型 c 中所有多带细胞自动机 i 分量 的构型,即 c 的第 i 子带。

多带细胞自动机的转换函数 $f:(Q^m)^n \rightarrow Q^m$ 由 m 个不同的 子带转换函数 $f_i:(Q^m)^n \rightarrow Q$ 构成,如式(1)所示。其中 n 是多 带细胞自动机的邻域个数,子带转换函数 f_i 只对子带 ϕ_i 产生 作用。

$$f(s^1, s^2, \cdots, s^n) =$$

$$(f_1s^1, s^2, \cdots, s^n), f_2(s^1, s^2, \cdots, s^n), \cdots, f_m(s^1, s^2, \cdots, s^n))$$
(1)

由式(1)可得多带细胞自动机的全局函数,如式(2)所示。 其中, f_1, f_2, \dots, f_m 对应的是构成滤波器组的各滤波器^[11]。

$$f = \begin{pmatrix} f_1 [c(a^1), c(a^2), \cdots, c(a^n)] \\ f_2 [c(a^1), c(a^2), \cdots, c(a^n)] \\ \vdots \\ f_m [c(a^1), c(a^2), \cdots, c(a^n)] \end{pmatrix}^{\mathsf{T}}$$
(2)

1.2 四子带可逆细胞自动机实现

可逆细胞自动机有多种实现方法,如 Wolfram 可逆细胞自动机、基于分区细胞自动机(partitioned CA)的方法、基于 Margolous 细胞(Margolus CA)的方法、基于二阶细胞自动机(second-order CA)的方法等^[12]。本文采用的是基于 Margolous 细 胞的方法。

Margolous 细胞实质上是一个 2×2 的细胞块,可将其视为 一个含有四分量的多子带细胞。定义 Margolous 细胞任一分量 是两状态的, $Q = \{0,1\}$,则 Margolous 细胞所有可能的状态个 数为 16,状态集为 Q^4 ,如图 2 所示,用十六进制数将十六种状 态进行了标志。四子带可逆细胞自动机有以下三个特点:

a) 胞邻域为1, 细胞的邻居就是自己。

b)转换函数,或者说演化规则 $f: Q^4 \rightarrow Q^4$ 。

c)四子带可逆细胞自动机的逆变换演化规则 $f^{-1}: Q^4 \rightarrow Q^4$ 。

图2 四子带细胞自动机的状态集

简单来说,可以将四子带可逆细胞自动机的演化规则看做 是一个排列。例如*f*(F)→8 表示进行可逆细胞自动机变换时, 遇到 F 标志的细胞自动机块,就将其变为8 标志的细胞自动机 块,如图 3 所示。

1.3 跳白块算法及改进算法

跳白块算法(简记为 WBS 算法)是二值图像压缩算法中

的一个经典算法,其对于含有大量白色像素连续分布的二值图 像有较好的压缩效果。具体做法是将图像每行分成若干个像 素子块(block),每块含 N 个像素。若子块中全部是白色像素 则用一个比特码字"0"表示;若子块中至少包含一个黑色像 素,则添加前缀码"1",保持该子块像素值不变,进行直接编 码,最后得到 N+1 比特码字。解压时通过前缀码可以唯一地 恢复原二值图像像素序列。

跳白块算法的压缩率较高。但当二值图像块中含有黑色 像素时,由于增加了前缀码,像素块不仅没有得到压缩反而增 大了。跳白块算法的改进算法较多,目前效果较好的有黄扬铭 等人^[13]的算法(简记为 LWBS 算法),即将变长编码与跳白块 编码相结合,根据上一行像素分布情况预测当前行的像素分布 情况,将当前行分割成长度不同的像素块,然后依据跳白块编 码算法进行压缩。

1	1		,	1	0
1	1			0	0
	图3		演化规	则	

2 RCA-WBS 二值图像压缩算法

假定二值图像的像素用 0 和 1 表示。本文所提的 RCA-WBS 算法是无损压缩算法,主要分为两个部分:a)用 Margolus 细胞所实现的四子带可逆细胞自动机对二值图像进行多相分 解,得到四个子带;b)用改进的跳白块算法分别对每个子带进 行压缩编码。其算法步骤简述如下:

a) 将二值图像信号映射到四子带可逆细胞自动机空间。 判断二值图像 I 的长和宽是不是 2 的整数倍,若不是则需要补 零处理。将二值图像分为互不重叠的 2 × 2 大小的像素块,每 个像素块就是一个 Margolus 细胞,如图 4 所示。

b)以光栅扫描方式从左到右、从上到下依次扫描2×2的 像素块,并根据四子带可逆细胞自动机的演化规则进行演化。 每个2×2的像素块演化后得到的仍是2×2大小的像素块。

c)演化后将每个2×2像素块中左上角的部分取出来组合 起来就是低频 LL 子带;将右上角的部分取出来组合起来构成 LH 子带;将左下角的部分取出来组合起来构成 HL 子带;将右 下角部分取出来构成 HH 子带。其中,LL 子带为低频部分,其 余三个子带为高频部分。

d)用改进的 WBS 算法依次对 LL、LH、HL 和 HH 子带进行 压缩编码。判断子带中当前大小为 N 的系数块是否为全白, 若是则用码字"0"表示该行;然后判断是否为全黑,若是则用 码字"10"表示该行,否则在系数块前加码字"11"进行直接 编码。

在事先知道系数块大小为 N 的前提下,由于使用了前缀

码,所以解码器可以唯一地进行码字划分和解码。解码器每遇 到一个"11",就知道这两个比特后的 N 个比特是一个混合块; 遇到"0"和"10",则分别将其恢复为 N 个比特的全白块和全 黑块。

3 实验结果与分析

实验中的图像均来自布朗大学 LEMS 视觉小组的二值数 字图像库。运行环境: CPU 为双核 Intel[®] Core[™] i5-2400 3.1 GHz,内存为4 GB,操作系统为 Windows 7 Service Pack 1。用 MATLAB R2007b 对算法进行编程实现。

3.1 四子带可逆细胞子自动机变换实验

本文采用图 5(a) 所示的 256 × 256 图像 Airplane1 作为测 试图像。演化规则定义如式(3)。

 $\begin{array}{ll} f(0) \rightarrow 0 & f(1) \rightarrow 1 & f(2) \rightarrow 3 & f(3) \rightarrow 2 \\ f(4) \rightarrow 4 & f(5) \rightarrow 4 & f(6) \rightarrow 7 & f(7) \rightarrow \mathrm{E} \\ f(8) \rightarrow 6 & f(A) \rightarrow \mathrm{C} & f(9) \rightarrow \mathrm{F} & f(B) \rightarrow \mathrm{D} \\ f(C) \rightarrow \mathrm{A} & f(D) \rightarrow \mathrm{B} & f(E) \rightarrow 9 & f(F) \rightarrow \mathrm{8} \end{array}$ (3)

图 5(b)~(f)是图像 Airplanel 经过四子带可逆细胞自动 机变换的结果。其中图 5(b)是 Airplanel 经过变换后得到的 四子带可逆细胞自动机域系数图;(c)~(f)是 Airplanel 经变 换分解后的到的四个子带图。从图中可以观察到,根据式(3) 定义的演化规则,分解后的四个子带中,LL子带表示的是原图 分解后的低频系数,保留了原图的大部分信息;LH、HL和 HH 子带保存的都是原图的边缘信息,表示的都是高频系数。其中 LL子带可以继续进行四子带可逆细胞自动机变换,直到最后 得到的子带图大小为2×2。

图5 Airplane1经四子带可逆细胞自动机变换后结果

此时 Airplane1 原图中每个像素的图像熵值为 0.817 bpp, 经过一次四子带可逆细胞自动机变换后,得到的四个子带中, LL 子带的图像熵值是 0.358 bpp,其余三个子带是 0.057 bpp、 0.061 bpp 和 0.043 bpp。数据结果从客观上证实了本文构造 的四子带可逆细胞自动机确实具有子带编码的功能。

3.2 RCA-WBS 算法仿真和分析

本文采用图 6 所示的六幅尺寸均为 128 × 128 像素的二值 图像为测试图像,代表三种类型,其中(d)(e)以白色为主,且 (e)中黑、白色比较集中;(a)图以黑色为主,且黑白分布较为 集中;(b)(c)在一行内有许多白色像素同时也穿插着很多黑 色像素。

在本实验中,分别用基本跳白块 WBS 算法、刘勇的跳白格改进算法 LWBS 和本文所提的 RCA-WBS 算法进行无损压缩

编码,并将结果进行对比。其中本文的 RCA-WBS 算法根据分 块大小不同分了三种情况进行实验。编码前原图像的比特数 均为16 384 bit(每个像素 1 bit,即比特率为 1 bit/像素),编码 后的比特数和比特率情况如表 1 和 2 所示。

50 100 150 250 50 100 150 200 250 (a) Airplane	50 100 150 200 250 50 100 150	100 150 200 b) Lena	50 100 150 200 250	50 100 150 (c) Baboon	200 250			
250 250 50 100 150 200 250 (d) House 图6	250 250 50 待编码的	100 150 200 (e) Cat)五幅典型	<u>し</u>)250					
表1	三种编码	马算法的比	特数比较		∕bit			
算法	airplane	lena	baboon	house	cat			
标准 WBS 算法	70 888	53 908	59 820	54 776	41 420			
LWBS 算法	30 010	25 765	27 243	25 982	22 643			
RCA-WBS(2×2分块)	20 143	20 635	24 444	21 567	18 320			
RCA-WBS(4×4分块)	5 189	5 902	7 227	6 179	4 751			
RCA-WBS(8×8分块)	1 400	1 766	1 966	1 719	1 294			
表2 三种编码算法的压缩比特率比较 /bit/pixel								
算法	airplane	lena	baboon	house	cat			
标准 WBS 算法	1.081 7	0.822 6	0.912 8	0.835 8	0.632 0			
LWBS 算法	0.457 9	0.393 1	0.4157	0.396 5	0.345 5			
RCA-WBS(2×2分块)	0.3074	0.314 9	0.373 0	0.329 1	0.279 5			
RCA-WBS(4×4分块)	0.079 2	0.090 1	0.110 3	0.094 3	0.072 5			
RCA-WBS(8×8分块)	0.021 4	0.026 9	0.030 0	0.026 2	0.0197			
日对末1.9 洞察可得到扫波 WDC 签述对则占在北方边圈								

从对表 1、2 观察可得到标准 WBS 算法对以白色为主的图 像压缩效果良好,对以黑色像素为主的图像压缩效果较差; LWBS 改进算法确实对标准 WBS 算法起到了改进作用;RCA-WBS 算法则大大提高了压缩率,随着 RCA-WBS 算法分块的变 大,压缩效果变好,分块大小为 8×8 时压缩率最高。以标准 WBS 算法压缩效果最好的图 6(e)为例,RCA-WBS(8×8 分 块)算法的压缩率大概是标准 WBS 算法压缩率的 32 倍。

压缩算法除了要求压缩性能好,对实时性也有要求。表3 列出了上述5种算法对测试图像进行压缩时所用的压缩执行 时间。

表3 三种编码算法的执行时间						
	airplane	lena	baboon	house	cat	
标准 WBS 算法	0.839 82	0.79698	0.751 83	0.931 49	0.713 66	
LWBS 算法	0.909 36	0.848 05	0.843 83	0.83072	0.732 4	
RCA-WBS(2×2分块)	6.2601	4.5716	4.5224	4.229	3.451 6	
RCA-WBS(4×4分块)	5.3807	3.877	4.021 6	3.626 4	3.174 6	
RCA-WBS(8×8分块)	5.691	3.895 1	3.800 9	3.574 9	2.516 2	

从表3可以看出,标准 WBS 所用时间最少;LWBS 改进算 法与 WBS 时间花费基本一致; RCA-WBS 算法压缩时间则稍 长,2×2 分块时所花时间最多,8×8 分块时较少。以标准 WBS 算法压缩效果最好的图 6(e)为例,RCA-WBS(2×2 分 块)算法所需要的压缩执行时间大约是标准 WBS 算法的 4.8 倍,RCA-WBS(8×8 分块)算法所需要的压缩执行时间大约是标准 WBS 算法的 3.5 倍,但相较于压缩比提升的倍数,这个时间消耗是可以接受的。

综合以上实验数据,RCA-WBS 算法具有较好的压缩比, 随着分块数的增大,压缩比继续提升,花费的压缩时间继续降 低。但是过大的分块不利于硬件实现,所以建议选择8×8大 小为宜。

4 结束语

本文首先提出了一个可实现信号子带编码的多子带可逆 细胞自动机模型,并用 Margolus 细胞构建了一个最简单的四子 带可逆细胞自动机实例。随后,用四子带可逆细胞自动机对二 值图像信号进行分解。在变换规则的作用下,原二值图像信号 被多相分解为一个低频子带和三个高频子带;接着对每个子带 进行压缩编码,即将每个子带的系数分块,当遇到全白块时用 码字0 替代,全黑块时用码字10 替代,混合块时则以码字11 作为前缀码分别进行编码。最后的实验数据表明,本文所提出 的基于多子带可逆细胞自动机的二值图像压缩算法的计算复 杂度低,且具有较好的压缩比。

参考文献:

- [1] MEYR H, ROSDOLSKY H G, HUANG T S. Optimum run length codes[J]. IEEE Trans on Communications, 1974, 22(6): 826-835.
- [2] KUNT M, JOHNSEN O. Block coding of graphics: a tutorial review[J]. Proceedings of the IEEE,1980,68(7):770-786.

(上接第1546页)轮廓像素。经多组实验验证,该方法识别率达 到 88.75%,速度可以达到 29 fps,较之该领域的经典算法有明 显的性能优势。同时,着眼于实际车载智能驾驶系统的需求, 该算法也在嵌入式平台上测试与优化,优化后速度可以达到 12 fps,在智能驾驶领域有着巨大的应用潜力。

参考文献:

- 公安部交通管理局. 2010 中华人民共和国道路交通事故统计年报[M]. 北京:人民交通出版社,2011:5-10.
- [2] HAYAKAWA H, FISHBECK P S, FISHHOFF B. Traffic accident statistics and risk perceptions in Japan and the United States[J]. Accident Analysis and Prevention, 2000, 32(6):827-835.
- [3] CANNY J. A computational approach to edge detection [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1986, 8 (6):679-698.
- [4] KITTLER J. On the accuracy of the Sobel edge detector[J]. Image and Vision Computing, 1983, 1(1):37-42.
- [5] PELI T, MALAH D. A study of edge detection algorithms [J]. Computer Graphics and Image Processing, 1982, 20(1):1-21.
- [6] ALY M M R. Real time detection of lane markers in urban streets [C]//Proc of IEEE Conference on Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2008:7-12.
- [7] BERTOZZI M, BROGGI A, CELLARIO M, et al. Artificial vision in road vehicles [J]. Proceedings of the IEEE, 2002, 90 (7): 1258-1271.
- [8] DUDA R O, HART P E. Use of the Hough transformation to detect lines and curves in pictures [J]. Communications of the ACM, 1972,15(1):11-15.
- [9] SATZODA R K, SATHYANARAYANA S S, SRIKANTHAN T, et

- [3] HUANG T S, HUSSAIN A B S. Facsimile coding by skipping white [J]. IEEE Trans on Communications, 1975, 23(12):1452-1460.
- [4] MOHAMED S A, FAHMY M M. Binary image compression using efficient partitioning into rectangular regions[J]. IEEE Trans on Communications, 1995, 43(5):1888-1893.
- [5] Joint Bi-level Image Experts Group. ISO/IEC 11544-1993, JBIG Bilevel image compression standard[S]. 1993.
- [6] KARI J. Reversible cellular automata [C]//LNCS, Vol 3572. Berlin: Springer-Verlag. 2005:57-68.
- [7] KARI J. Theory of cellular automata: a survey [J]. Theoretical Computer Science, 2005, 334(1-3): 3-33.
- [8] PAEK K. Reversible cellular automata [EB/OL]. (2012-03). http://sjsu.rudyrucker.com/~kwanghyung.paek/paper/.
- [9] KARI J. Linear cellular automata with multiple state variables [C]// Proc of the 17th Annual Symposium on Theoretical Aspects of Computer Science. 2000:110-121.
- [10] CRUZ-REYES C, KARI J. Non-linear subband coding with cellular automata[C]//Proc of the 12th International Conference on Automata and Formal Languages. 2008:146-157.
- [11] LI Xiao-wei, NAM T H, LEE S K. Digital watermarking in transformdomain based on cellular automata transform [C]//Proc of the 2nd International Conference on Next Generation Information Technology. 2011:132-136.
- [12] TOFFOLI T, MARGOLUS N. Invertible cellular automata; a review
 [J]. Physica D: Nonlinear Phenomena, 1990, 45 (1-3); 229-253.
- [13] 黄扬铭,潘伟.二值图像变长跳白块压缩方法[J]. 厦门大学学报:自然科学版,1995,34(2):169-172.

al. Hierarchical additive Hough transform for lane detection [J]. IEEE Embedded Systems Letters,2010,2(2):23-26.

- [10] BORKAR A, HAYES M H, SMITH M T. Polar randomized Hough transform for lane detection using loose constraints of parallel lines [C]//Proc of IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2011:1037-1040.
- [11] WANG Yue, TEOH E K, SHEN Ding-gang. Lane detection and tracking using b-snake[J]. Image and Vision Computing, 2004, 22 (4):269-280.
- [12] KIM Z. Realtime lane tracking of curved local road [C]//Proc of IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE Press, 2006:1149-1155.
- [13] REDMILL K A, UPADHYA S, HRISHNAMURTHY A, et al. A lane tracking system for intelligent vehicle applications [C]//Proc of IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE Press, 2001:273-279.
- [14] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
- [15] 李庆扬,王能超,易大义.数值分析[M].4 版.北京:清华大学出版社,2006:51-57.
- [16] BERTOZZI M, BROGGI A, CONTE G, et al. Obstacle and lane detection on ARGO [C]//Proc of IEEE Conference on Intelligence Transportation Systems. Piscataway: IEEE Press, 1997:1010-1015.
- [17] TI Corporation. OMAP mobile application platform: white paper[EB/ OL]. (2011)[2011-03-28]. http://www.ti.com/lit/ml/swpt034b/ swpt034b.pdf.