不确定 Lurie 时滞系统绝对稳定性分析*

张 芬1,张艳邦2

(1. 陕西咸阳师范学院 数学与信息科学学院,陕西 咸阳 712000; 2. 西北工业大学 自动化学院,西安 710072)

摘 要:研究了不确定 Lurie 时滞系统的绝对稳定问题。通过构造适当的 Lyapunov 泛函、引入一些自由权矩阵 和充分考虑时滞导数的上限信息,得到了基于 LMIs(线性矩阵不等式)形式的时滞相关绝对稳定性新准则,两个 数值例子验证了所得结论的有效性和更弱保守性。

关键词:绝对稳定;不确定 Lurie 时滞系统; Lyapunov 泛函;线性矩阵不等式(LMIs)
 中图分类号: TP13 文献标志码: A 文章编号: 1001-3695(2012)11-4144-04
 doi:10.3969/j.issn.1001-3695.2012.11.037

Absolute stability analysis of uncertain Lurie systems with time-delay

ZHANG Fen¹, ZHANG Yan-bang²

(1. School of Mathematics & Information Science, Xianyang Normal University, Xianyang Shaanxi 712000, China; 2. School of Automation, Northwestern Polytechnical University, Xi' an 710072, China)

Abstract: This paper investigated the absolute stability problem for uncertain time-delay Lurie systems. By constructing proper Lyapunov functional, introducing some free weight matrix and taking adequately into account the upper bound of time-delay difference, it derived the new delay-dependent absolute stability criterion in terms of LMIs. It presented two examples to illustrate the effectiveness and the reduced conservatism of the proposed results.

Key words: absolute stability; uncertain Lurie time-delay systems; Lyapunov functional; LMIs(linear matrix inequalities)

0 引言

Lurie 系统是一类非常重要的非线性控制系统,自 1944 年 Lurie 系统的绝对稳定性问题提出以来,关于 Lurie 系统的研究 已取得了许多有价值的成果^[1~12]。由于客观事物的运动规律 是复杂多样的,在许多诸如神经网络、电路信号系统、生态系统 等中,总是不可避免地存在着时间延迟现象,而且它通常是导 致系统不稳定和性能变差的重要根源。因此,研究时滞 Lurie 控制系统的稳定性具有重要的理论意义和应用价值。Lurie 时 滞系统的绝对稳定条件可分为两大类:时滞无关条件[1,2]和时 滞相关条件^[3-12]。由于时滞相关条件考虑了系统的时滞信 息,所得结果具有更弱的保守性。近年来,取得时滞 Lurie 控制 系统时滞相关成果的方法有模型变换方法^[3]、积分不等式方 法^[4,8]、采用增广的 Lyapunov 泛函法、时滞分解方法^[7-9]以及 使用自由权矩阵^[12]。尤其是文献[7~9]使用的时滞分解方法 得到了 Lurie 时滞系统时滞相关的绝对稳定条件,尽管其结果 比文献[4,10,11]的结果有较弱的保守性,但遗憾的是,随着 区间分割的增多,计算量也在增大。

本文考虑了具有时变结构不确定性 Lurie 时滞系统的绝 对稳定问题。为了减少保守性,通过构造适当的 Lyapunov 泛 函,引入一些自由权矩阵和充分考虑时滞导数的上限信息,得 到了新的时滞相关绝对稳定性准则。最后的两个数值例子表 明,本文方法所得结论具有更小的保守性。

1 问题描述

考虑具有时变结构不确定性的 Lurie 时滞系统为

$$\begin{aligned} \dot{\mathbf{x}}(t) &= (\mathbf{A} + \Delta \mathbf{A}(t))\mathbf{x}(t) + (\mathbf{B} + \Delta \mathbf{B}(t))\mathbf{x}(t - h(t)) + \mathbf{D}\omega(t) \\ z(t) &= \mathbf{M}\mathbf{x}(t) + \mathbf{N}\mathbf{x}(t - h(t)) \\ \omega(t) &= -\varphi(t, z(t)) \end{aligned} \tag{1}$$

其中: $x(t) \in \mathbb{R}^n$ 、 $\omega(t) \in \mathbb{R}^m$ 、 $z(t) \in \mathbb{R}^n$ 分别是系统的状态向量、 输入向量和输出向量;矩阵 A、B、D、M、N 为具有合适维数的 常数矩阵;h(t)是时变的传输时滞且满足

$$h(t) \leq h, 0 \leq \dot{h}(t) \leq \mu \tag{2}$$

其中:h 和 μ 是常数,并且初始条件 $\varphi(t)$ 表示[-h,0]上的连 续初始向量函数。

 $0 \leq$

 $\varphi(t,z(t)):[0,\infty] \times \mathbb{R}^m \to \mathbb{R}^m$ 为对连续的非线性函数,对 z(t)满足 Lipchitz 条件, $\varphi(t,0) = 0$ 且对 ∀ $t \ge 0$, ∀ $z(t) \in \mathbb{R}^m$ 满 足以下扇形约束:

$$\left[\varphi(t,z(t)) - \mathcal{K}_{1}z(t)\right] \left[\varphi(t,z(t)) - \mathcal{K}_{2}z(t)\right] \leq 0$$
(3)

其中: K_1 、 K_2 为具有合适维数的常数实矩阵,且 $K = K_2 - K_1$ 为 对称的正定矩阵,即非线性函数 $\varphi(t,z(t))$ 属于[K_1, K_2]。

另外,如果非线性函数 $\varphi(t,z(t))$ 属于 [0, K],即 $\varphi(t,z(t))$ 满足

$$\varphi(t,z(t))^{\mathrm{T}}[\varphi(t,z(t)) - \mathbf{K}z(t)] \leq 0$$
(4)

$$\Delta A(t) 和 \Delta B(t) 是不确定参数矩阵且满足[\Delta A(t) \Delta B(t)] = HF(t) [E_1 E_2]$$
(5)

收稿日期: 2012-03-29; 修回日期: 2012-05-10 基金项目: 陕西省教育厅科学研究计划资助项目(12JK0860)

作者简介:张芬(1978-),女,讲师,硕士,主要研究方向为时滞系统、神经网络(zhangfen-2@163.com);张艳邦(1980-),男,讲师,博士,主要研 究方向为神经网络、自适应控制.

 $H \setminus E_1 \setminus E_2$ 是具有合适维数的常数矩阵; F(t) 是未知的时变矩阵, 且满足

$$\mathbf{F}^{\mathrm{T}}(t) \mathbf{F}(t) \leq \mathbf{I} \quad \forall t \geq 0 \tag{6}$$

其中1表示合适维数的单位矩阵。

首先,考虑式(1)的标称系统 Σ_0 为

$$\begin{cases} x(t) = Ax(t) + Bx(t - h(t)) + D\omega(t) \\ z(t) = Mx(t) + Nx(t - h(t)) \\ \omega(t) = -\varphi(t, z(t)) \\ x(t) = \phi(t), t \in [-h, 0] \end{cases}$$
(7)

在得到主要结论之前,先引入以下定义和引理。

定义1 如果对所有属于扇形区域[K_1, K_2]的非线性函数 $\varphi(t, z(t)), 系统 \Sigma_0(式(7))$ 是全局一致渐近稳定的,则称系 统 Σ_0 在扇形区域[K_1, K_2]内绝对稳定。

引理 1^[8] 对
$$\forall a, b \in \mathbb{R}^n$$
, $Q = Q^T > 0$, 有如下不等式成立:
±2 $a^T b \leq a^T Q a + b^T Q^{-1} b$

引理 2^[13] 这里是对引理 2 的补充说明,引理 2 即为 Schur 补充引理。下述 LMI。

$$\begin{bmatrix} \Pi_1 & \Pi_3^T \\ \Pi_3 & -\Pi_2 \end{bmatrix} < 0, \text{ odd} \begin{bmatrix} -\Pi_2 & \Pi_3 \\ \Pi_3^T & \Pi_1 \end{bmatrix} < 0$$

等价于

 $\Pi_1 + \Pi_3^{\mathrm{T}} \Pi_2^{-1} \Pi_3 < 0 (\Pi_1 = \Pi_1^{\mathrm{T}}, \Pi_2 = \Pi_2^{\mathrm{T}} > 0)$

引理 3^[14] 给定具有适当维数的矩阵 $Q = Q^{T}, H, E, 则 Q + HF(t) E + E^{T}F^{T}(t) H^{T} < 0$ 。

对任意满足 $F(t) F^{\dagger}(t) \leq I$ 的 F(t) 成立的充要条件是存 在 $\lambda > 0$, 使得

 $Q + \lambda HH^{T} + \lambda^{-1} E^{T} E < 0$

2 主要结果

考虑非线性函数 $\varphi(t,z(t)) \in [0,K]$ 的情形,有如下结论:

定理1 对给定标量 $\mu > 0, h > 0,$ 如果存在对称正定矩阵 $P_{11} > 0, Q_1 > 0, Q_2 > 0, R > 0,$ 以及任意合适维数的矩阵 $\{S_i\}_{i=1}^{b}, \{T_i\}_{i=1}^{6}, P_{ij}(i=1, \dots, 6, j=2, 3)$ 和标量 $\varepsilon > 0,$ 使得如 下的LMI(式(8))成立。

$$\begin{bmatrix} \Phi & h\bar{A}^{\mathrm{T}}R & hS & hT \\ * & -hR & 0 & 0 \\ * & * & -hR & 0 \\ * & * & * & -hB \end{bmatrix} < 0$$
(8)

则系统 Σ_0 在扇形区域[0, K]内绝对稳定。 其中:

$$\Phi = \begin{bmatrix}
\Phi_{11} & \Phi_{12} & \Phi_{13} & \Phi_{14} & \Phi_{15} & \Phi_{16} \\
* & \Phi_{22} & \Phi_{23} & \Phi_{24} & \Phi_{25} & \Phi_{26} \\
* & * & \Phi_{33} & \Phi_{34} & \Phi_{35} & \Phi_{36} \\
* & * & * & \Phi_{44} & \Phi_{45} & \Phi_{46} \\
* & * & * & * & \Phi_{55} & \Phi_{56} \\
* & * & * & * & * & \Phi_{66}
\end{bmatrix}$$
(9)
$$\Phi_{11} = P_{11}A + A^{T}P_{11} + P_{12} + P_{12}^{T} + P_{13} + P_{13}^{T} + Q_{1} + Q_{2} + S_{1} + S_{1}^{T} \\
\Phi_{12} = P_{11}B - P_{12} + P_{22}^{T} + P_{23}^{T} - S_{1} + S_{2}^{T} + T_{1} \\
\Phi_{13} = -P_{13} + P_{32}^{T} + P_{33}^{T} + S_{3}^{T} - T_{1} \\
\Phi_{14} = -P_{12} + P_{42}^{T} + P_{43}^{T} + S_{5}^{T} \\
\Phi_{16} = P_{11}D + P_{62}^{T} + P_{63}^{T} + S_{5}^{T} - \varepsilon M^{T}K^{T}$$

$$\begin{split} \varPhi \Phi_{22} &= -P_{22} - P_{22}^{\mathrm{T}} - (1-\mu) Q_{1} - S_{2} - S_{2}^{\mathrm{T}} + T_{2} + T_{2}^{\mathrm{T}} \\ & \varPhi_{23} &= -P_{22} - P_{32}^{\mathrm{T}} - S_{3}^{\mathrm{T}} - T_{2} + T_{3}^{\mathrm{T}} \\ & \varPhi_{24} &= -P_{22} - P_{42}^{\mathrm{T}} - S_{4}^{\mathrm{T}} + T_{4}^{\mathrm{T}} \\ & \varPhi_{25} &= -P_{22}^{\mathrm{T}} - S_{5}^{\mathrm{T}} + T_{5}^{\mathrm{T}} \\ & \varPhi_{26} &= -P_{62}^{\mathrm{T}} - S_{5}^{\mathrm{T}} + T_{5}^{\mathrm{T}} \\ & \varPhi_{26} &= -P_{33}^{\mathrm{T}} - P_{33}^{\mathrm{T}} - Q_{2} - T_{3} - T_{3}^{\mathrm{T}} \\ & \varPhi_{33} &= -P_{33} - P_{33}^{\mathrm{T}} - Q_{2} - T_{3} - T_{3}^{\mathrm{T}} \\ & \varPhi_{35} &= -P_{33}^{\mathrm{T}} - P_{53}^{\mathrm{T}} - T_{5}^{\mathrm{T}} \\ & \varPhi_{36} &= -P_{63}^{\mathrm{T}} - F_{6}^{\mathrm{T}} - \varepsilon N^{\mathrm{T}} K^{\mathrm{T}} S_{5}^{\mathrm{T}} \\ & \varPhi_{36} &= -P_{63}^{\mathrm{T}} - F_{6}^{\mathrm{T}} - \varepsilon N^{\mathrm{T}} K^{\mathrm{T}} S_{5}^{\mathrm{T}} \\ & \varPhi_{46} &= -P_{42}^{\mathrm{T}} - P_{42}^{\mathrm{T}} , \varPhi_{45} &= -P_{43} - P_{52}^{\mathrm{T}} \\ & \varPhi_{46} &= -P_{62}^{\mathrm{T}} , \varPhi_{55} &= -P_{53} - P_{53}^{\mathrm{T}} \\ & \varPhi_{46} &= -P_{62}^{\mathrm{T}} , \varPhi_{55} &= -P_{53} - P_{53}^{\mathrm{T}} \\ & \varPhi_{56} &= -P_{63}^{\mathrm{T}} , \varPhi_{66} &= -2\varepsilon I \\ S &= [S_{1}^{\mathrm{T}} S_{2}^{\mathrm{T}} S_{3}^{\mathrm{T}} S_{5}^{\mathrm{T}} S_{5}^{\mathrm{T}}]^{\mathrm{T}} \\ & T &= [T_{1}^{\mathrm{T}} T_{2}^{\mathrm{T}} T_{3}^{\mathrm{T}} T_{4}^{\mathrm{T}} T_{5}^{\mathrm{T}} T_{6}^{\mathrm{T}}]^{\mathrm{T}} \\ & \bar{A} &= [A \ B \ 0 \ 0 \ 0 \ D D] \qquad (10) \\ & \Omega_{1} &= \begin{bmatrix} S_{1} + S_{1}^{\mathrm{T}} & -S_{1} + S_{2}^{\mathrm{T}} S_{3}^{\mathrm{T}} \cdots -S_{6}^{\mathrm{T}} \\ & * & 0 \cdots 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ & * & * & 0 & 0 \end{bmatrix} \\ & (11) \\ & \varOmega_{2} &= \begin{bmatrix} 0 \ T_{1} \ - T_{1} \ 0 \ 0 \ 0 \ 0 \\ & * \ T_{2} + T_{2}^{\mathrm{T}} - T_{2} + T_{3}^{\mathrm{T}} \ T_{4}^{\mathrm{T}} \ T_{5}^{\mathrm{T}} \ T_{6}^{\mathrm{T}} \\ & * & * \ 0 \ 0 \ 0 \\ & & * & * \ * \ 0 \ 0 \end{bmatrix} \end{bmatrix}$$
 (12) \\ & \texttt{WH} \qquad & \mathring{\mathcal{B}} \\ & \mathring{\mathcal{E}}^{\mathrm{T}}(t) = [x^{\mathrm{T}}(1) x^{\mathrm{T}}(t - h(t)) x^{\mathrm{T}}(t - h) \\ & (f_{t-h(t)}^{\mathrm{T}} \dot{x}) \, \mathrm{d} x \end{bmatrix} T \ (f_{t-h}^{\mathrm{T}} \dot{x}) \, \mathrm{d} x \ T \ (f_{t-h}^{\mathrm{T}} \dot{x}) \, \mathrm{d} x \ T \ (f_{t-h}^{\mathrm{T}} \dot{x}) \, \mathrm{d} x \ T \ (f_{t-h}^{\mathrm{T}} \dot{x}) \, \mathrm{d} x \end{bmatrix} \end{bmatrix}

构造如下新颖的 Lyapunov-Krasovskii 泛函 $V(t) = V_1(t) + V_2(t) + V_3(t)$

其中:

$$\begin{split} V_{1}(t) &= x^{\mathrm{T}}(t) P_{11}x(t) \\ V_{2}(t) &= \int_{t-h(t)}^{t} x^{\mathrm{T}}(s) Q_{1}x(s) \,\mathrm{d}s + \int_{t-h}^{t} x^{\mathrm{T}}(s) Q_{2}x(s) \,\mathrm{d}s \\ V_{3}(t) &= \int_{t-h}^{t} (s-t+h) \,\dot{x}^{\mathrm{T}}(s) R \,\dot{x}(s) \,\mathrm{d}s \end{split}$$
(13)
$$V_{1}(t) \, \langle V_{2}(t) \, \langle V_{3}(t) \, \Im R \, \Re \, \Sigma_{0} \, \Re \, \Theta, \Lambda \\ \dot{V}_{1}(t) &= 2x^{\mathrm{T}}(t) P_{11} \, \dot{x}(t) = \\ 2\xi^{\mathrm{T}}(t) P \begin{bmatrix} \dot{x}(t) \\ x(t) - x(t-h(t)) - \int_{t-h(t)}^{t} \dot{x}(s) \,\mathrm{d}s \\ x(t) - x(t-h) - \int_{t-h}^{t} \dot{x}(s) \,\mathrm{d}s \end{bmatrix} = \\ \xi^{\mathrm{T}}(t) P \Delta \xi(t) \end{aligned}$$
(14)
$$\begin{split} \ddot{\Xi} \oplus : P = \begin{bmatrix} P_{11}^{\mathrm{T}} & 0 & 0 & 0 & 0 & 0 \\ P_{12}^{\mathrm{T}} \, P_{23}^{\mathrm{T}} \, P_{33}^{\mathrm{T}} \, P_{43}^{\mathrm{T}} \, P_{53}^{\mathrm{T}} \, P_{63}^{\mathrm{T}} \\ \Delta = \begin{bmatrix} A & B & 0 & 0 & 0 & D \\ 1 & -1 & 0 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 & -1 & 0 \end{bmatrix} \end{aligned}$$
(15)

$$\dot{V}_{2}(t) \leq x^{\mathrm{T}}(t) Q_{1}x(t) - (1-\mu)x^{\mathrm{T}}(t-h(t)) Q_{1}x(t-h(t)) + x^{\mathrm{T}}(t) Q_{2}x(t) - x^{\mathrm{T}}(t-h) Q_{2}x(t-h)$$
(16)
$$\dot{V}_{3}(t) = h\dot{x}^{\mathrm{T}}(t) R\dot{x}(t) - \int_{t-h}^{t} \dot{x}^{\mathrm{T}}(s) R\dot{x}(s) \mathrm{d}s =$$

$$h \dot{x}^{\mathrm{T}}(t) \boldsymbol{R} \dot{x}(t) - \int_{t-h(t)}^{t} \dot{x}^{\mathrm{T}}(s) \boldsymbol{R} \dot{x}(s) \,\mathrm{d}s - \int_{t-h}^{t-h(t)} \dot{x}^{\mathrm{T}}(s) \boldsymbol{R} \dot{x}(s) \,\mathrm{d}s$$
(17)

由引理1得

$$-\int_{t-h(t)}^{t} \dot{x}^{\mathrm{T}}(s) \mathbf{R} \dot{x}(s) \mathrm{d}s \leq \xi^{\mathrm{T}}(t) \Omega_{1}\xi(t) + h\xi^{\mathrm{T}}(t) \mathbf{S}\mathbf{R}^{-1}\mathbf{S}^{\mathrm{T}}\xi(t)$$
(18)

$$-\int_{t-h}^{t-h(t)} \dot{x}^{\mathrm{T}}(s) \mathbf{R} \dot{x}(s) \mathrm{d}s \leqslant \\ \boldsymbol{\xi}^{\mathrm{T}}(t) \boldsymbol{\Omega}_{2} \boldsymbol{\xi}(t) + h \boldsymbol{\xi}^{\mathrm{T}}(t) \mathbf{T} \mathbf{R}^{-1} \mathbf{T}^{\mathrm{T}} \boldsymbol{\xi}(t)$$
(19)

 Ω_1 、 Ω_2 定义在式(11)(12)中。

由式(13)~(19),则

$$\dot{V}(t) \leq \sum_{i=1}^{3} \dot{V}_{i}(t) - 2\varepsilon \boldsymbol{\omega}^{\mathrm{T}}(t) \boldsymbol{K} [\boldsymbol{M} \boldsymbol{x}(t) + \boldsymbol{N} \boldsymbol{x}(t - \boldsymbol{h}(t))] - 2\varepsilon \boldsymbol{\omega}^{\mathrm{T}}(t) \boldsymbol{\omega}(t) \leq$$

$$\xi^{\mathrm{T}}(t) \left(\Lambda + hSR^{-1}S^{\mathrm{T}} + hTR^{-1}T^{\mathrm{T}}\right)\xi(t)$$
(20)

$$\Phi_{11} + hA^{\mathrm{T}}RA \quad \Phi_{12} + hA^{\mathrm{T}}RB \quad \Phi_{13} \quad \Phi_{14} \quad \Phi_{15} \quad \Phi_{16} + hA^{\mathrm{T}}RD$$

$$* \quad \Phi_{22} + hB^{\mathrm{T}}RB \quad \Phi_{23} \quad \Phi_{24} \quad \Phi_{25} \quad \Phi_{26} + hB^{\mathrm{T}}RD$$

$$* \quad * \quad \Phi_{33} \quad \Phi_{34} \quad \Phi_{35} \quad \Phi_{36}$$

$$* \quad * \quad * \quad \Phi_{44} \quad \Phi_{45} \quad \Phi_{46}$$

$$* \quad * \quad * \quad * \quad \Phi_{55} \quad \Phi_{56}$$

$$* \quad * \quad * \quad * \quad * \quad \Phi_{66} + hD^{\mathrm{T}}RD$$

(21) 由引理2,Λ + h**SR⁻¹S^T** + h**TR⁻¹T^T <**0 等价于式(8),从

而保证当 ||x|| ≠ 0 时, V(t) < 0, 由定义 1, 定理得证。

注1:一般运用引理1是对交叉项进行处理,本文对引理1进行变形,既处理了积分项,又增加了自由权矩阵 *S*、*T*,这不但得到了易于求解的线性矩阵不等式,而且也减少了结果的保守性。

对非线性函数在一般的扇形区域[K_1, K_2]中的情形,通过 应用反馈环的变换^[15],可得系统 Σ_0 在扇形区域[K_1, K_2]内的 绝对稳定性等价于系统

$$\begin{aligned} \dot{x}(t) &= (A - DK_1 M) x(t) + (B - DK_1 N) x(t - h(t)) + D\omega(t) \\ x(t) &= Mx(t) + Nx(t - h(t)) \\ \omega(t) &= -\varphi(t, z(t)) \\ x(t) &= \phi(t), t \in [-h, 0] \end{aligned}$$
(22)

在扇形区域 $[0, K_2 - K_1]$ 内的绝对稳定性。

注2:对 $\varphi(t, z(t)) \in [K_1, K_2]$,通过应用反馈环的变换^[15],用($A - DK_1M$)、($B - DK_1N$)和 K_2, K_1 分别替换定理1 中的 A、B和 K,可得到定理2。

定理2 对给定标量 $\mu > 0, h > 0,$ 如果存在对称正定矩阵 $P_{11} > 0, Q_1 > 0, Q_2 > 0, R > 0,$ 以及任意合适维数的矩阵 $\{S_i\}_{i=1}^{6}, \{T_i\}_{i=1}^{6}, P_{ij}(i=1, \dots, 6, j=2, 3)$ 和标量 $\varepsilon > 0,$ 使得如 下的LMI(式(23))成立。

$$\begin{bmatrix} \Phi^{-} h A^{T} R & h S & h T \\ * & -h R & 0 & 0 \\ * & * & -h R & 0 \\ * & * & * & -h R \end{bmatrix} < 0$$
(23)

则系统 Σ_0 在扇形区域[K_1, K_2]内绝对稳定。 其中:

$$\hat{\boldsymbol{\Phi}} = \begin{bmatrix} \hat{\boldsymbol{\Phi}}_{11} & \hat{\boldsymbol{\Phi}}_{12} & \boldsymbol{\Phi}_{13} & \boldsymbol{\Phi}_{14} & \boldsymbol{\Phi}_{15} & \hat{\boldsymbol{\Phi}}_{16} \\ * & \boldsymbol{\Phi}_{22} & \boldsymbol{\Phi}_{23} & \boldsymbol{\Phi}_{24} & \boldsymbol{\Phi}_{25} & \boldsymbol{\Phi}_{26} \\ * & * & \boldsymbol{\Phi}_{33} & \boldsymbol{\Phi}_{34} & \boldsymbol{\Phi}_{35} & \hat{\boldsymbol{\Phi}}_{36} \\ * & * & * & \boldsymbol{\Phi}_{44} & \boldsymbol{\Phi}_{45} & \boldsymbol{\Phi}_{46} \\ * & * & * & * & \boldsymbol{\Phi}_{55} & \boldsymbol{\Phi}_{56} \\ * & * & * & * & * & \boldsymbol{\Phi}_{66} \end{bmatrix}$$

$$(24)$$

$$\hat{\Phi}_{11} = P_{11}A + A^{T}P_{11} - P_{11}DK_{1}M - M^{T}K_{1}^{T}DP_{11} + P_{12} + P_{12}^{T} + P_{13} + P_{13}^{T} + Q_{1} + Q_{2} + S_{1} + S_{1}^{T}$$

$$\hat{\Phi}_{12} = P_{11}B - P_{11}DK_{1}N - P_{12} + P_{22}^{T} + P_{23}^{T} - S_{1} + S_{2}^{T} + T_{1}$$

$$\hat{\Phi}_{16} = P_{11}D + P_{62}^{T} + P_{63}^{T} + S_{6}^{T} + \varepsilon M^{T}K_{1}^{T} - \varepsilon M^{T}K_{2}^{T}$$

$$\hat{\Phi}_{36} = -P_{63}^{T} - T_{6}^{T} + \varepsilon N^{T}K_{1}^{T} - \varepsilon N^{T}K_{2}^{T}$$

$$\hat{A} = \begin{bmatrix} A - DK_{1}M & B - DK_{1}N & 0 & 0 & 0 \end{bmatrix}$$
(25)

且

$$\Phi_{1j}, \Phi_{3j}(j=3,4,5), \Phi_{2k}(k=2,\dots,6)$$

$$\Phi_{ii}(i,j=4,5,6),$$

在定理1中定义。

对于具有时变结构不确定性式(5)的 Lurie 时滞系统 ∑ (式(1))用 $A + HF(t) E_1$ 和 $B + HF(t) E_2$ 分别替换式(23)中的 A 和 B,由引理 3 可得如下定理。

定理3 对给定标量 $\mu > 0, h > 0,$ 如果存在对称正定矩阵 $P_{11} > 0, Q_1 > 0, Q_2 > 0, R > 0,$ 以及任意合适维数的矩阵 $\{S_i\}_{i=1}^{6}, \{T_i\}_{i=1}^{6}, P_{ij}(i=1, \dots, 6, j=2, 3)$ 和标量 $\varepsilon > 0, \delta > 0,$ 使 得如下的LMI(式(26))成立。

$$\begin{bmatrix} \hat{\Phi} & h \hat{A}^{\mathrm{T}} R & h S & h T & P_{11} \hat{H} & \delta \hat{E} \\ * & -h R & 0 & 0 & h R H & 0 \\ * & * & -h R & 0 & 0 & 0 \\ * & * & * & -h R & 0 & 0 \\ * & * & * & * & -\delta I & 0 \\ * & * & * & * & -\delta I & 0 \\ \hat{H} = \begin{bmatrix} H^{\mathrm{T}} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^{\mathrm{T}} \\ \hat{H} = \begin{bmatrix} H^{\mathrm{T}} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$$

则具有时变结构不确定性式(5)的系统 Σ 在扇形区域[K_1, K_2] 内绝对稳定。

3 仿真算例

例1 考虑含有时变结构不确定 Lurie 系统^[4-7],其系数 矩阵为

$$A = \begin{bmatrix} -2 & 0 \\ 0 & -0.9 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix}, D = \begin{bmatrix} -0.2 \\ -0.3 \end{bmatrix},$$
$$M = \begin{bmatrix} 0.6 & 0.8 \end{bmatrix}, N = \begin{bmatrix} 0 & 0 \end{bmatrix}, H = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix},$$
$$E_1 = E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, K_1 = 0.2, K_2 = 0.5, \alpha \ge 0$$

当μ=0时,对于不同的α,通过 MATLAB 解定理3中的 LMIs^[16]获得了保证系统绝对稳定的时滞上界h。表1分别列 出了文献[4~7]和定理3中的结果。

+ 1	→ L 	
表 1	- 对于个问的 α.	,保证系统绝对稳定的时滞上界 h

α	0.00	0.05	0.10	0.15	
文献[4]	2.485 9	2.239 6	2.024 3	1.8363	
文献[5]	2.504 9	2.264 7	2.053 2	1.866 6	
文献[6]	2.536 1	2.338 1	2.156 6	1.9901	
文献[7] n = 1	2.485 9	2.239 6	2.024 3	1.8363	
文献[7] n=2	3.008 0	2.6864	2.4074	2.165 8	
文献[7] n=3	3.111 0	2.774 4	2.482 8	2.230 8	
定理3	4.040 0	3.874 5	3.713 4	3.556 6	

从表1中可以看出,定理3大大改进了现有文献[4~7]

的结果。

例2 考虑含有时变结构不确定 Lurie 系统^[10,11],其系数 矩阵为

$$A = \begin{bmatrix} -2 & 0 \\ 0 & -0.9 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix}, D = \begin{bmatrix} -0.2 \\ -0.3 \end{bmatrix}$$
$$M = \begin{bmatrix} 0.3 & 0.1 \end{bmatrix}, N = \begin{bmatrix} 0.1 & 0.2 \end{bmatrix}, H = 0.1 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$E_1 = E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, K_1 = 0.2, K_2 = 0.5$$

对于不同的μ,表2分别列出了文献[10,11]和定理3获 得的保证系统绝对稳定的时滞上界 h。

表2 对于不同的µ,保证系统绝对稳定的时滞上界 h

μ	0.00	0.30	0.60	0.90	≥1.00
文献[10]	3.3057	2.078 7	1.419 5	0.922 8	0.763 8
文献[11]	4.1077	2.3707	1.481 9	1.034 6	1.034 6
定理3	5.745 0	3.325 0	2.186 7	1.358 8	1.093 7

从表 2 中可以看出,定理 3 比文献[10,11]中的相关结论 具有更弱保守性。

4 结束语

本文考虑了一类 Lurie 时变时滞系统的绝对稳定问题。 通过构造适当的 Lyapunov 函数和引入一些自由权矩阵,给出 了系统时滞相关绝对稳定性判据。最后的两个数值例子(表 1、2)表明,所得结论改进了现有文献的结论。本文方法还可 推广到 Markov 跳变神经网络系统、随机系统等稳定性问题。

参考文献:

- [1] BLOMAN P A. Extension of popov absolute stability criterion to nonautonomous systems with delays [J]. International Journal of Control,2000,73(15):1349-1361.
- [2] GUAN Zuo-xin, GE Wei-gao. Lyapunov functional for multiple delay general Lurie systems with multiple non-linearites [J]. Journal of Mahematics Analysis and Applications, 2001, 259 (15): 596-608.
- YU Li, HAN Qing-long, YU Shi-ming, et al. Delay-dependent conditions for robust absolute stability of uncertain time-delay systems
 [C]//Proc of the 42nd IEEE Conference on Decision and Control. 2003;6033-6037.

- [3] 李凯,崔丽娟.集成学习算法的差异性及性能比较[J]. 计算机工程,2008,34(6):35-37.
- [4] BRAN S, WANG W. On diversity and accuracy of homogeneous and heterogeneous ensembles [J]. International Journal of Hybrid Intelligent System, 2007, 4(2):103-128.
- [5] HSU K W, SRIVASTAVA J. Diversity in combinations of heterogeneous classifiers [C]//Proc of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2009:923-932.
- [6] WOLPERT D. Stacked generalization [J]. Neural Networks, 1992, 5(2):241-260.
- [7] SEEWALD A K. How to make stacking better and faster while also taking care of an unknown weakness [C]//Proc of the 19th International Conference on Machine Learning. 2002:554-561.
- [8] HATAMI N, EBRAHIMPOUR R. Combining multiple classifiers: di-

- [4] HAN Qing-long. Absolute stability of time-delay systems with sectorbounded nonlinearity[J]. Automatica, 2005, 41(12):2171-2176.
- [5] XU S, FENG G. Improved robust absolute stability criteria for uncertain time-delay systems [J]. IET Control Theory Applications, 2007,1(6):854-859.
- [6] LEE S M, PARKS J H. Delay-dependent criteria for absolute stability of uncertain time-delayed [J]. Journal of the Franklin Institute, 2010,347(1):146-153.
- [7] WU Min, FENG Zhi-yong, HE Yong. Improved delay-depended absolute stability of Lur' e systems with time-delay [J]. International Journal of Control Automation and Systems, 2009, 7(6): 1009-1014.
- [8] KRISHNANL R, GOSHAIDAS R. Improved stability criteria for Lurie type systems with time-varying delay [J]. Acta Automatica Sinica, 2011,5(37):636-644.
- [9] QIU Fang, ZHANG Quan-xin. Absolute stability analysis of Lurie control system with multiple delays: an integral-equality approach [J]. Nonlinear Analysis: Real World Applications, 2011, 12(3): 1475-1484.
- [10] HAN Qing-long, YUE Dong. Absolute stability of Lur'e systems with time-varying delay[J]. IET Control of Theroy Applications, 2007, 1 (3):854-859.
- [11] GAO Jin-feng, PAN Hai-peng, JI Xiao-fu. A new delay dependent absolute stability criterion for Lurie systems with time-varying delay
 [J]. Acta Automatica Sinica, 2010, 36(6):845-850.
- [12] CHEN Dong-yan, LIU Wei-hua. Delay-dependent robust stability for Lurie control systems with multiple time-delays[J]. Control Theory & Applications, 2005, 22(3):499-502.
- [13] MAHMOUD M S. Resilient control of uncertain dynamical systems [M]. Berlin: Springer, 2004.
- [14] PETERSEN I R, HOLLOT C V. A Riccati equation approach to the stabilization of uncertain linear systems [J]. Automatica, 1986, 22
 (4):397-412.
- [15] KHALIL H K. Nonlinear systems [M]. New Jersey: Prentice-Hall, 1996.
- [16] BOYD S, E GHAOUI L, FERON E, et al. Linear matrix inequalities in systems and control theory[M]. Philadelphia:SIAM, 1994.

versify with boosting and combining by stacking [J]. International Journal of Computer Science & Network Security, 2007, 7(1): 127-131.

- [9] MENAHEM E, ROKACH L, ELOVICI Y. Troika: an improved stacking schema for classification tasks [J]. Information Sciences, 2009,179(24):4097-4122.
- [10] LEDEZMA A, ALER A, SANCHIS A, et al. GA-stacking: evolutionary stacked generalization [J]. Intelligent Data Analysis, 2010, 14(1):89-119.
- [11] MELVILLE P, MOONEY R J. Creating diversity in ensembles using artificial data[J]. Information Fusion, 2005, 6(1):99-111.
- [12] FRANK A, ASUNCION A. UCI machine learning repository [DB/ OL]. (2010). http://www.archive.ics.uci.edu/ml.
- [13] HALL M, FRANK E, HOLMES G, et al. The WEKA data mining software: an update[C]//Proc of ACM SIGKDD Explorations Newsletter. New York: ACM Press, 2009:10-18.

⁽上接第4136页)

表1 数据集的基本信息							
数据集	样本数	特征数	离散型特征	连续型特征	类数		
anneal	898	38	32	6	6		
auto-mpg	399	7	2	5	4		
breast-c	286	9	9	0	2		
breast-w	699	9	0	9	2		
colic	368	22	15	7	2		
credit-a	695	15	9	6	2		
credit-g	1 000	20	13	7	2		
diabetes	768	8	0	8	2		
heart-c	303	13	7	6	5		
heart-s	270	13	0	13	2		
hepatitis	155	19	13	6	2		
iris	153	4	0	4	3		
labor	57	16	8	8	2		
lymph	148	18	15	3	4		
segment	2 310	19	0	19	7		
soybean	687	35	35	0	19		
vote	435	16	16	0	2		
zoo	104	17	16	1	7		

4.2 实验过程设置

所有测试都在 WEKA^[13]平台上进行。本文选择了 WEKA 提供的七种算法用于构造 0-层分类器,分别为 Logistic、Random Forest、C4.5、IB1、Jrip、NaïveBayes、OneR。根据这些算法在 18 个数据集上的测试结果,按几何平均错误率(表 2)由小到大分 成六组进行实验。

六组异构分类器分别为

a) BC2: NaïveBayes \OneR ;

b) BC3: Jrip NaïveBayes OneR;

c) BC4: IB1 , Jrip , NaïveBayes , OneR;

d) BC5:C4.5,IB1,Jrip,NaïveBayes,OneR;

e) BC6:Random Forest C4.5 IB1 Jrip OneR NaïveBayes;

f) BC7 : Logistic <code>Random Forest C4.5 IB1 Jrip NaïveBayes</code> One R $_{\circ}$

表2 基	本学习算法对	比	OneR	的几	何平均	匀错误	率
------	--------	---	------	----	-----	-----	---

	NaïveBayes	IB1	Jrip	Logistic	Random Forest	C4.5	
几何平均 错误率	1.588	1.853	1.754	2.120	2.053	1.861	

1-层泛化时均采用 C4.5 算法,集成分类器的成员个数设 定为 10,所有分类器用 10 次 10-折交叉验证来计算其分类准 确率,人工样本数量与原始训练数据之比 $P \in [0.1,1]$,基本学 习算法的参数使用 WEKA 的默认设置。

4.3 结果分析

图 2 为人工样本比例 P = 1 时的结果。可以看到,在六组 对比测试中,有五组显示出 SDE 算法要优于 STA 算法,而 BC5 这一组 STA 略优于 SDE,但两者非常接近。这表明,在 1-层泛 化时,根据训练特征集加入不同的人工数据,以使生成的多个 成员分类器间具有差异度,再按其输出结果进行平均集成,有 助于提高集成分类器的准确率。 图 3 给出了 1-层的成员分类器个数 K 从 2~10 的测试结 果,可以看到,BC7 的集成效果最佳,BC6 居其次,而 BC2 则排 在最后。分析可知,0-层的异构分类器数量越多,则 1-层特征 数量就越多,有助于学习算法更好地逼近真实的分类函数,故 精度也会相应获得提高。而 1-层成员分类器数量的增加,有 助于整个集成分类器性能的提升。

表3给出了人工样本比例 P 由 0.1 增加到1时的实验结 果。表中带下划线的数字表示该组异构分类器在对应 P 值时 准确率最高。可以看到,六组的最好结果均出现在比例为 0.6 或以下,最高平均值出现在 P = 0.3。由此可见, P 值并非越大 越好,较小的 P 值反而有助于加快构造分类器,减少计算 时间。

表3 不	司人工样本	比例的测试结果
------	-------	---------

<i>P</i> 值	BC2	BC3	BC4	BC5	BC6	BC7	平均值
0.1	85.835	86.231	86.361	86.363	86.291	86.533	86.269
0.2	85.976	86.171	86.366	86.387	86.252	86.382	86.255
0.3	85.777	86.221	86.395	86.217	86.365	86.660	86.272
0.4	85.793	86.128	86.161	86.393	86.233	86.661	86.228
0.5	85.844	85.933	86.142	86.286	86.344	86.657	86.201
0.6	85.922	86.027	86.242	86.226	86.457	86.446	86.220
0.7	85.866	85.958	86.076	86.358	86.220	86.619	86.183
0.8	85.693	86.047	86.189	86.362	86.229	86.471	86.165
0.9	85.838	86.126	86.302	86.264	86.324	86.566	86.237
1.0	85.639	86.184	86.192	86.261	86.373	86.489	86.190

5 结束语

本文提出了融合 DECORATE 的异构分类器集成算法 SDE。该算法首先在 0-层生成多个异构分类器,而后由这些分 类器对样本集进行预测,得到初始 1-层训练样本,再将随机生 成的人工样本加入到 1-层训练集。由于人工样本的类标签与 集成分类器判决结果是相反的,可以最大程度地将差异性数据 引入训练集,从而使得 1-层成员分类器相互间具有差异性。 多组实验结果表明,SDE 算法在分类精度上要优于传统的 STA 算法。同时通过实验也发现,人工样本的生成比例为原训练样 本数量的 60% 或者更低,同样也能取得较理想的泛化性能,而 且还具有较快的计算速度。下一步工作将分析研究 1-层成员 分类器的数量与随机人工样本比例之间的关系。

参考文献:

- DIETTERICH T G. Ensemble methods in machine learning [C]// Lecture Notes in Computer Science, vol 1857. Berlin: Springer, 2000: 1-15.
- [2] BROWN G. Ensemble learning[C]//Proc of Encyclopedia of Machine Learning. Berlin: Springer, 2010:312-320. (下转第 4147 页)